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LINEAR AND NONLINEAR DYNAMICS OF
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In this paper a nonlinear equation of motion is derived for the dynamics of a slender
cantilevered cylinder in axial flow, generally terminated by an ogival free end. Inviscid forces
are modelled by an extension of Lighthill’s slender-body work to third-order accuracy. The
viscous, hydrostatic and gravity-related terms are derived separately, to the same accuracy.
The equation of motion is obtained via Hamilton’s principle. The boundary conditions related
to the ogival free end are also derived separately. The paper is concluded by a discussion of the
methods used to obtain the solutions presented in Part 3 of this study.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A general introduction to this three-part study into the dynamics of cantilevered
cylinders in axial flow has been given in Part 1 (Pa.ııdoussis et al. 2002), wherein the physical
aspects of the dynamics are considered.
The experimentally observed dynamical behaviour of the system makes it abundantly

clear that it would be useful to have a theory available which would predict nonlinear, as
well as linear, aspects of the observed behaviour. Linear aspects are mainly related to (i)
the general behaviour of the system before its first loss of stability, e.g., whether motions
are damped by the action of the flow, and (ii) the critical flow velocities for the bifurcations
associated with changes in dynamical behaviour, e.g., the pitchfork bifurcation giving rise
to divergence and the Hopf or other type of bifurcation giving rise to single- or coupled-
mode flutter. However, several other, important aspects of dynamical behaviour can only
be predicted via nonlinear theory; for example: (i) the existence of post-divergence
bifurcations (e.g., the flutter predicted by linear theory may be related to an unstable Hopf
bifurcation, and hence may not exist in theory, even though experiments clearly show that
it should); (ii) the transition from one dynamical state to the next; (iii) the amplitude of
divergence, i.e., location of the fixed points, and limit-cycle amplitude and frequency for
flutter; (iv) the exploration of nonstandard dynamics, such as the quasiperiodic or
aperiodic regime between second- and third-mode flutter. To-date, however, all the
available theoretical models (Pa.ııdoussis 1966a, 1973) are linear.
In this paper, a weakly nonlinear equation of motion is derived in a Hamiltonian

framework, which in the linear limit is identical to that obtained earlier by Pa.ııdoussis
(1973). The kinetic and potential energies of the cylinder itself are discussed in Section 3.
0889-9746/02/060715+23 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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The fluid dynamic forces are introduced in terms of virtual work expressions, separately
for the inviscid forces (Section 4.1) and the hydrostatic and frictional forces (Section 4.2),
separately for convenience, as discussed in Section 2. The nonlinear equation of motion, as
well as the linearized version, are given in Section 5. The boundary conditions are
presented in Section 6, while a discussion of the methods of analysis to be used in Part 3 is
given in Section 7.
The results of calculations using this theoretical model are presented in Part 3 (Semler

et al. 2002) of this study, wherein they are compared with the observed behaviour.

2. DEFINITIONS AND PRELIMINARIES

The system consists of a flexible slender cylinder of radius R, length L, flexural rigidity EI
and mass per unit length m, centrally located in a channel of radius R0 and subjected to an
axial flow velocity U, as shown in Figure 1. The undeformed cylinder axis coincides with
the X-axis, and is in the direction of gravity if the system is not horizontal. The cylinder is
cantilevered, generally fitted with an ogival end-piece at the free end (Figure 1), which is
considered to be short relative to the overall length of the cylinder. The equations of
motion are derived ignoring this noncylindrical segment of the cylinder, which is taken
into account with the boundary conditions.
The basic assumptions made for the cylinder and for the fluid are that (i) the

fluid is incompressible, (ii) the mean flow velocity is constant, (iii) the cylinder is
slender, so that Euler–Bernoulli beam theory is applicable, (iv) although the deflections
of the cylinder may be large, strains are small, and (v) the cylinder centre-line is
inextensible.
The derivation of the equations of motion is given here with sufficient detail to be

followed, but omitting some of the steps in the interests of brevity. The assiduous reader is
referred to Lopes et al. (1999a,b) for the full details,y as well as for the derivation of the
equation of motion of a cylinder with both ends supported.
Two coordinate systems are used: the Lagrangian ðX ;Y ;Z;TÞ, associated with material

points on the undeformed cylinder, and the Eulerian ðx; y; z; tÞ, associated with the
deformed state of the cylinder. The displacement of a material point is thus, u ¼ x� X ,
v ¼ y� Y and w ¼ z� Z } see Figure 2. For a slender cylinder and motions with the
cylinder centre-line in the ðX ;YÞ-plane, we have Y ¼ 0 and z ¼ Z ¼ 0.
As the cylinder centre-line is assumed to be inextensible,

ð@x=@XÞ2 þ ð@y=@XÞ2 ¼ 1: ð1Þ

Hence, in this case, one may use the curvilinear coordinate along the cylinder, s, instead of
X : s ¼ X .z One may thus obtain the curvature k along the deformed cylinder (Semler
et al. 1994),

k ¼
@2y=@s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð@y=@sÞ2

q : ð2Þ
yHowever, refer to the paragraph following equation (45).
zFor an extensible cylinder, however, defining e as the axial strain along the centre-line, X and s are related by

qX=qs ¼ 1=ð1þ eÞ, with 1þ eðXÞ ¼ ½ðqx=qXÞ2 þ ðqy=qXÞ2	1=2 ¼ ½ð1þ qu=qXÞ2 þ ðqv=qXÞ2	1=2.



Fig. 1. Diagrammatic view of a vertical cantilevered cylinder in axial flow, in the test-section of a circulating
system.

Fig. 2. Diagram defining the coordinate systems. A material point G on the neutral axis of the cylinder at
curvilinear coordinate s is located at GðX ;YÞ before deformation and Gðx; yÞ afterwards; so that its displacement
is fu; vg ¼ fx�X ; y�Yg. For a point P at a distance y from the centre-line, at the same cross-section, the

displacement is fu� y sin y1; vþ uðcos y1 � 1Þg.
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The equation of motion is derived via Hamilton’s principle,

d
Z t2

t1

L dtþ
Z t2

t1

dW dt ¼ 0; ð3Þ

where L ¼ Tc �Vc is the Lagrangian, Tc and Vc being the kinetic and potential
energies of the cylinder, and dW the virtual work by the fluid-related forces acting on the
cylinder.
The derivation of the forces due to the fluid proceeds in a similar manner as in

Pa.ııdoussis (1966a, 1973). Thus, the inviscid, viscous and hydrostatic forces are determined
separately for convenience } rather than together, say by direct application of the
Navier–Stokes equations. The separate derivation of inviscid and viscous forces may be
justified by the fact that the former are dominant} considering a large enough Reynolds
number. The inviscid forces are derived via slender body potential flow theory, while the
viscous forces are formulated semi-empirically. This approach simplifies the analysis
considerably and has been shown to give acceptable results (Pa.ııdoussis 1966a, b, 1973,
1979; Pa.ııdoussis et al. 2002).
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In the derivations in Sections 3 and 4, the following relationships have been found to be
useful:

dx ¼ �ðy0 þ 1
2y

03Þdyþ
Z s

0

ðy00 þ 3
2y

02y00Þdy dsþ Oðe5Þ; ð4aÞ

Z L

0

gðsÞ
Z s

0

f ðsÞdy ds
� �

ds ¼
Z L

0

Z L

s

gðsÞ ds
� �

f ðsÞdy ds; ð4bÞ

Z L

s

ðL� sÞy0y00 ds ¼ �1
2
ðL� sÞy02 þ

Z L

s

1
2
y02 ds: ð4cÞ

The equation of motion is derived correct to third order, Oðe3Þ, for y ¼ v  OðeÞ and, via
equation (1), u Oðe2Þ. Hence the expressions for the components of the virtual work dW
must be correct to Oðe3Þ, while the energy expressions to Oðe4Þ.

3. KINETIC AND POTENTIAL ENERGIES OF THE CYLINDER

Nonlinear expressions for the kinetic and potential energies of the cylinder itself have been
obtained when deriving the nonlinear equations of motion of a pipe conveying fluid. The
reader is referred to Semler et al. (1994) for details.
The kinetic and potential energies are

Tc ¼ 1
2
m

Z L

0

V2c dX ; Vc ¼ 1
2
EI

Z L

0

k2 dX �mg
Z L

0

x dX ; ð5Þ

where Vc ¼ ’xxiþ ’yyj is the velocity of a cylinder element, and k is its curvature. The limit L
is really L� l, where l5L is the length of the ogival end, here ignored. After considerable
manipulation and use of equations (1) and (4a,b), while keeping in mind the orders of
magnitude of the various quantities, we obtain

d
Z t2

t1

Tc dt ¼ �m
Z t2

t1

Z L

0

.yyþ y0
Z s

0

ð ’yy02 þ y0 .yy0Þ ds
�

�y00
Z L

s

Z s

0

ð ’yy02 þ y0 .yy0Þ ds ds
�
dy ds dtþ OðE5Þ; ð6aÞ

d
Z t2

t1

Vc dt ¼EI
Z t2

t1

Z L

0

½y0000 þ 4y0y00y000 þ y003 þ y0000y02	 dy ds dt

�mg
Z t2

t1

Z L

0

½�ðy0 þ 1
2
y03Þ þ ðL� sÞðy00 þ 3

2
y00y02Þ	 dy ds dt

þ OðE5Þ; ð6bÞ

where ð Þ0 ¼ @ð Þ=@s and ð � Þ ¼ @ð Þ=@t.

4. THE FLUID DYNAMIC FORCES

In accordance with the approach adopted, an element of the deformed or oscillating
cylinder is subjected to the following set of forces, as shown in Figure 3: the inviscid fluid
dynamic force FAds, the normal and longitudinal viscous (frictional) forces, FNds and



Fig. 3. An element ds of the cylinder, showing the forces acting on it.
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FLds, respectively, and the hydrostatic forces Fpxds and Fpyds in the x- and y-direction,
respectively.y

4.1. THE INVISCID FLUID DYNAMIC FORCES

These forces are obtained via slender-body potential flow theory, following closely the
Lighthill (1960) formulation. The motion of the body is not represented by the deflection
of its centre-line; rather, the motion of every point of the cylinder is taken into account.
Hence, the coordinate y is no longer equal to the displacement v, but is of the form
y ¼ Y þ v, where Y describes the position of a point in its original state.
A coordinate transformation is required in order to describe the body in its undeformed

state. Hence, it seems appropriate to introduce also Lagrangian coordinates, since the
Eulerian coordinate system involves deformation and motion of the body, whereas the
Lagrangian system represents the undeformed state of the body. The Eulerian coordinates
ðx; y; z; tÞ are related to the Lagrangian ones ðX ;Y ;Z;TÞ by

xðX ;TÞ ¼ X þ uðX ;TÞ; yðX ;TÞ ¼ Y þ vðX ;TÞ; z ¼ Z; t ¼ T : ð7Þ

We now consider a displacement yðX ; tÞ of the cylinder in the y-direction, away from its
stationary, straight configuration. In Figure 4, we introduce the unit vector pair ði1; j1Þ,
respectively in the tangential and normal to the centre-line directions, at angle y1 to ði; jÞ.
We consider next an element of the cylinder as in Figure 4, and define the relative fluid-

body velocity, V ¼ ’yyþ ’xx�Uf , in which Uf is the mean axial flow velocity relative to the
deforming cylinder. Then, projecting this on j1, leads to V ¼ ’yy cos y1 þ ðUf � ’xxÞ sin y1.
From equation (7) we have @x=@X ¼ 1þ @u=@X þ OðE4Þ, and hence y1 ¼
tan�1½ð@y=@XÞð1� @u=@XÞ	 þ OðE5Þ. From this, keeping in mind the orders of magnitude
of y and u, we obtain

y1 ¼ y0 � u0y0 � 1
3
y03 þ OðE5Þ ð8Þ

and cos y1 ¼ 1� 1
2
y21 þ Oðy41Þ; sin y1 ¼ y1 � 1

6
y31 þ Oðy51Þ; therefore,

cos y1 ¼ 1� 1
2
y02 þ OðE4Þ; sin y1 ¼ y0 � u0y0 � 1

2
y03 þ OðE5Þ; ð9Þ

wherez it is understood that X has been replaced by s in the derivatives. Hence, returning
to V , we can write

VðX ; tÞ ¼ ’yyþUf y0 � 1
2
’yyy02 �Uf u0y0 � 1

2
Uf y

03 � ’xxy0 þ OðE5Þ: ð10Þ
yThe ds here is an elemental length and should not be confused with variational dx and dy in Sections 3 and 5.
zFor a cylinder with inextensible centreline, this and other expressions are eventually simplified considerably.

Thus, since u0 ¼ �1
2
y02; sin y1 ¼ y0 þ OðE5Þ.



Fig. 4. An element of the cylinder used for the determination of the relative fluid–cylinder velocity V and of
the angles y1 and y2.
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Next, the velocity Uf needs to be related to U, the flow velocity relative to the
undeformed cylinder. Considering the three-dimensional velocity potential f, we may
write Uf ¼ @f=@x and U ¼ @f=@X . Then, since @f=@x ¼ ð@f=@XÞ=ð@x=@XÞ, using the
expression for @x=@X obtained previously, we have

Uf ¼ U 1�
@u

@X

� 	
þ OðE4Þ: ð11Þ

Hence, equation (10) becomes

VðX ; tÞ ¼ ’yyþUy0 � 1
2
’yyy02 � 2Uu0y0 � 1

2
Uy03 � ’xxy0 þ OðE5Þ: ð12Þ

4.1.1. The pressure distribution

The velocity potential may be expressed as

fðX ;Y ;Z;TÞ ¼ UX þ f0ðX ;Y ;ZÞ þ f1ðX ;Y ;Z;TÞ; ð13Þ

where UX is due to the mean flow, f0 to variations in the body cross-section (here none),
and f1 to motion of the body. This potential must satisfy a number of conditions: (i) the
fluid velocity normal to the outer channel is zero; (ii) the fluid does not penetrate the
cylinder; (iii) the solution must be 2p-periodic around the cylinder, and even with respect
to Z.
The pressure is determined via the Bernoulli equation,

P� P1 ¼ �r
@f
@t

� 1
2
rð=fÞ2 þ 1

2
rU2: ð14Þ

Then, using the relationships for derivatives in the Eulerian and in the Lagrangian
coordinates,

@

@x
¼

@

@X
�

@u

@X

@

@X
�

@v

@X

@

@Y
þ

@u

@X

@v

@X

@

@Y
þ OðE5Þ;

@

@y
¼

@

@Y
;

@

@z
¼

@

@Z
; ð15Þ

@

@t
¼

@

@T
�

@u

@T

@

@X
�

@v

@T

@

@Y
þ

@u

@T

@v

@X

@

@Y
þ OðE5Þ;
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we obtain

P� P1 ¼ � r
@f
@T

�
@u

@T

@f
@X

�
@v

@T

@f
@Y

þ
@u

@T

@v

@X

@f
@Y

� 	

� 1
2
r

@f
@X

�
@u

@X

@f
@X

�
@v

@X

@f
@Y

þ
@u

@X

@v

@X

@f
@Y

� 	2

� 1
2
r

@f
@X

� 	2
�1
2
r

@f
@Z

� 	2
þ1
2
rU2: ð16Þ

Substituting now equation (13) in (16), we have

P� P1 ¼ � r
@f1
@T

�
@u

@T
U þ

@f0
@X

þ
@f1
@X

� 	
�

@v

@T
�

@u

@T

@v

@X

� 	
@f0
@Y

þ
@f1
@Y

� 	� �

� 1
2
r 1�

@u

@X

� 	
U þ

@f0
@X

þ
@f1
@X

� 	
�

@v

@X
�

@u

@X

@v

@X

� 	
@f0
@Y

þ
@f1
@Y

� 	� �2

� 1
2
r

@f0
@Y

þ
@f1
@Y

� 	2
�1
2
r

@f0
@Z

þ
@f1
@Z

� 	2
þ1
2
rU2: ð17Þ

After many manipulations and truncation to OðE4Þ, we obtain an expression of
the form

P� P1 ¼ ðP� P1Þ0 þ ðP� P1Þ2 þ ðP� P1Þ1; ð18Þ

where (i) P0 is the pressure distribution in steady flow past the undeformed motionless
body, (ii) P2 is the pressure distribution due to steady motion of the cylinder through fluid
at rest, and (iii) P1 is the remainder of the pressure distribution. It is found (Lighthill 1960;
Lopes et al. 1999a, b) that

ðP� P1Þ0 ¼P0

¼ � 1
2
r 2U

@f0
@X

þ
@f0
@X

� 	2
þ

@f0
@Y

� 	2
þ

@f0
@Z

� 	2( )
þ OðE5Þ; ð19Þ

ðP� P1Þ2 ¼ P2

¼ � r �U
@u

@T
�

@v

@T

@f1
@Y

þ
@u

@T

@v

@X

@f1
@Y

�U2 @u

@X
þ 1

2
U2 @u

@X

� 	2(

þ 2U
@u

@X

@v

@X

@f1
@Y

�U
@v

@X

@f1
@Y

þ 1
2

@v

@X

� 	2 @f1
@Y

� 	2
þ1
2

@f1
@Y

� 	2
þ1
2

@f1
@Z

� 	2)
þ OðE5Þ: ð20Þ

Neither of the two pressure distributions (19) and (20) contributes to a net force on the
body. Net forces result from the unsteady part of the motion of the body and from
variations of the cross-section with X , i.e., the pressure distribution ðP� P1Þ1 � P1.
Subtracting equations (20) and (19) from (17) yields the equations for P1. Furthermore,
since f0 is due to variations of the body cross-section with X , this may further be
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simplified by taking f0 ¼ 0, yielding

P1 ¼ � r
@

@T
þ U 1�

@u

@X

� 	
�

@u

@T
þU

@u

@X

� 	� �
@

@X

� �
f1

�

þ 1
2

@f1
@X

� 	2
�
@v

@X

@f1
@Y

@f1
@X

)
þ OðE5Þ: ð21Þ

Once P1 is determined, the lateral force, or lift, per unit length in the Y-direction may be
obtained:

FAðX ;TÞ ¼
I
SX

P1ð�dZÞ

¼ �r
I
SX

@

@T
þ U 1�

@u

@X

� 	
�

@u

@T
þU

@u

@X

� 	� 	
@

@X

� �
f1

�

þ 1
2

@f1
@X

� 	2
�
@v

@X

@f1
@Y

@f1
@X

)
ð�dZÞ þ OðE5Þ; ð22Þ

where the minus sign in front of dZ enters to reconcile the coordinate axes used here with
Lighthill’s, and SX is the circumference of the cylinder.
The next step is to determine f1, which must satisfy the 2-D Laplace equation, subject

to the conditions given below equation (13); e.g., the nonpenetration condition, expressed
in cylindrical coordinates, is

@f1
@r

þ cos y
@v

@X

� 	2
cos y

@f1
@r

� sin y
@f1
r@y

� 	
þ cos y �

@v

@T
�U

@v

@X

�

þ
@u

@T

@v

@X
þ 2U

@u

@X

@v

qX
�

@v

@X

@f1
@X

	
þ OðE5Þ ¼ 0 at r ¼ R; ð23Þ

while on the channel wall we have

@f1
@r


r¼R0

¼ 0: ð24Þ

4.1.2. The linear expression for the lift

It is instructive to solve the linear problem first, as an introduction to the more difficult
nonlinear one.
Solutions to the general two-dimensional Laplace equation r2Sðr; yÞ ¼ 0 are of the

form

Sðr; yÞ ¼ ðAþ B ln rÞðC þDyÞ þ
X1
n¼0

Enr
n cos nyþ Fnrn sin nyf

þGnr�ncos nyþHnr
�n sin nyg; ð25Þ

where A to D and En to Hn are functions of X , subject to the appropriate boundary and
regularity conditions.



DYNAMICS OF CYLINDERS IN AXIAL FLOW. PART 2 723
Simplifying equation (23) to first order, the boundary conditions to be satisfied are

@f1
@r


r¼R0

¼ 0;
@f1
@r


r¼R

¼
@v

@T
þU

@v

@X

� 	
cos y;

f1ðr; y;X ;TÞ ¼ f1ðr; yþ 2p;X ;TÞ; f1ðr; y;X ;TÞ ¼ f1ðr;�y;X ;TÞ:

ð26Þ

According to these boundary conditions and considering the form of the solution for the
two-dimensional Laplace equation (25), we can express f1 in the form

f1ðr; y;X ;TÞ ¼ VðX ;TÞFðr; y;XÞ; ð27Þ

where VðX ;TÞ ¼ ½ð@v=@TÞ þUð@v=@XÞ	 is the linear relative fluid-body velocity. It is noted
that F is also a solution of the two-dimensional Laplace equation, but with the following
boundary conditions:

ð@F=@rÞ

r¼R0

¼ 0; ð@F=@rÞ

r¼R¼ cos y; ð28a;bÞ

Fðr; y;XÞ ¼ Fðr; yþ 2p;XÞ; Fðr; y;XÞ ¼ Fðr;�y;XÞ: ð28c;dÞ

The potential F is of the form (25), with the coefficients A;B; . . . ;Hn being functions of X .
Condition (28d) implies that D ¼ 0, and condition (28b) leads to BC ¼ 0, n ¼ 1, E1 �
G1=R2 ¼ 1 and F1 �H1=R2 ¼ 0. Hence, F may be written as

Fðr; y;XÞ ¼ A0 þ 1þ
G1

R2

� 	
rþ

G1

r

� �
cos yþ

H1

R2
rþ

H1

r

� 	
sin y; ð29Þ

where A0 ¼ AC (in the event that B ¼ 0 and C 6¼ 0). Then, applying condition (28a), we
obtain H1 ¼ 0 and G1 ¼ �R20R

2=ðR20 � R
2Þ, which leads to

Fðr; y;XÞ ¼ 1�
R20

R20 � R
2

� 	
r�

R20R
2

rðR20 � R
2Þ

� �
cos y; ð30Þ

where the constant A0 has been suppressed, since the potential can only be determined to
within a constant. Notice that condition (28c) is automatically satisfied.y

Next, truncating equation (22) to first order, we obtain the linear expression of the
inviscid hydrodynamic force,

FAðX ;TÞ ¼ �r
@

@T
þU

@

@X

� 	 I
SX

f1ðr; y;X ;TÞð�dZÞ: ð31Þ

Then, using equations (27) and (30), the integral in equation (31) becomesI
SX

VðX ;TÞFðr; y;XÞð�dZÞ ¼
Z 2p

0

VðX ;TÞ R� 2
R20R

R20 � R
2

� 	
cos yð�R cos yÞ dy

¼
R20 þ R

2

R20 � R
2

� 	
VðX ;TÞpR2 ¼ wVA;
yFor a slender cylinder with R=L51, we have Fðr; y;XÞ ¼ OðEÞ, and hence, it is verified a posteriori that f1 ¼
VðX ;TÞFðr; y;XÞ is of second order (V being of first order), which is an assumption made in the analysis in

conjunction with equation (13).
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where w is the virtual mass coefficient, and A is the cross-sectional area of the cylinder. The
inviscid hydrodynamic force is then given by the familiar expression

FAðX ;TÞ ¼ �
@

@T
þU

@

@X

� 	
½MVðX ;TÞ	; ð32Þ

where M ¼ wrA is the virtual (added) mass per unit length.

4.1.3. The lift expression, correct to OðE4Þ
Let us now consider the nonlinear case. In this case, we define the potential f1 by

f1ðr; y;X ;TÞ ¼ VðX ;TÞFðr; y;XÞ þCðr; y;X ;TÞ; ð33Þ

where the potential C is the nonlinear part of f1, correct to fourth order, which also
satisfies a two-dimensional Laplace equation. Again, C needs to be 2p-periodic and even
with respect to y. Concerning the two other boundary conditions, the condition on the
outer channel is simply

qC
qr


r¼R0

¼ 0; ð34Þ

whereas the condition of nonpenetration at r ¼ R requires additional manipulations.
Substituting equation (33) into (23), and truncating the expression obtained to fourth
order, yields

VðX ;TÞ
@F
@r

þ
@C
@r

� 	
þ cos y

@v

@X

� 	2
VðX ;TÞ cos y

@F
@r

� sin y
@F
r@y

� 	

þ cos y �VðX ;TÞ þ
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X
�

@v

@X

@V

@X
F

� 	
þ OðE5Þ ¼ 0;

which, according to condition (28b), can be reduced to

@C
@r


r¼R

¼ �
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X

� 	
cos y� V

@v

@X

� 	2
cos y

@F
@r

� sin y
@F
r@y

� 	
cos y

þ
@v

@X

@V

@X
F cos yþ OðE5Þ:

Then, replacing F by equation (30) at r ¼ R, we obtain

@C
@r


r¼R

¼ �
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X

� 	
cos y� a�

b

2

� 	
V

@v

@X

� 	2
cos y

þ
b

2
V

@v

@X

� 	2
cos 3yþ

@v

@X

@V

@X
ðaþ bÞ

R

2
ð1þ cos 2yÞ þ OðE5Þ; ð35Þ
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where a ¼ �R2=ðR20 � R
2Þ and b ¼ �R20=ðR

2
0 � R

2Þ. Consequently, considering conditions
(34), (35) and the form of the solutions (25), we finally obtain

Cðr; y;XÞ ¼ �
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X

� 	
� a�

b

2

� 	
V

@v

@X

� 	2" #
arþ b

R2

r

� 	
cos y

þ
b

6
V

@v

@X

� 	2
�

R4

R60 � R
6

� 	
r3 �

R4

r3
R60

R60 � R
6

� �
cos 3y

þ
@v

@X

@V

@X
ðaþ bÞ

R

4
�

R3

R40 � R
4

� 	
r2 �

R3

r2
R40

R40 � R
4

� �
cos 2y

þ
@v

@X

@V

@X
ðaþ bÞ

R2

2
ln rþ OðE5Þ; ð36Þ

where the last term satisfies condition (34) only for R0 large, i.e., R=R051. Actually, this
is not an excessive requirement: one can verify that a ratio of 0�1 for R=R0, which is
indeed relatively large compared to R=L0�025 for a slender body, leads to
½ðaþ bÞR2=2R0	0�05R (the coefficient of the derivative of the last term with respect to
r at r ¼ R0). Hence, apart from special cases where the outer channel is very close to the
cylinder, we may conclude that this approximation is reasonable.
Substituting now the expression for f1 into equation (22) and truncating at fourth order

yields

FAðX ;TÞ ¼ � r
I
SX

@

@T
þ U 1�

@u

@X

� 	
�

@u

@T
þU

@u

@X

� 	� 	
@

@X

� �
VF

�

þ
@

@T
þU

@

@X

� 	
Cþ 1

2

@V

@X

� 	2
F2

�V
@v

@X

@V

@X

@F
@Y

F
�
ð�dZÞ þ OðE5Þ: ð37Þ

Then, substituting F by equation (30) and C by equation (36) into (33), with special
attention to the integration of products of cosines, the inviscid hydrodynamic force (37)
becomes

FAðX ;TÞ ¼ � rA
@

@T
þ U 1�

@u

@X

� 	
�

@u

@T
þU

@u

@X

� 	� 	
@

@X

� 	��

� wV � w
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X

� 	
� %wwV

@v

@X

� 	2 !#
�%wwV

@v

@X

@V

@X

�
þ OðE5Þ; ð38Þ

where

w ¼ �ðaþ bÞ ¼
R20 þ R

2

R20 � R
2
and %ww ¼ �ðaþ bÞða� 1

2 bÞ ¼
1
2

ðR20 þ R
2ÞðR20 � 2R

2Þ

ðR20 � R
2Þ2

ð39Þ

are virtual mass coefficients.
We notice that, as R0 becomes large, w ! 1 and %ww ! 1

2
, and in that case

FAðX ;TÞ ¼ �
@

@T
þ U 1�

@u

@X

� 	
�

@u

@T
þU

@u

@X

� 	� �
@

@X

� �

� V �
@u

@T

@v

@X
þ 2U

@u

@X

@v

@X

� 	
� 1
2
V

@v

@X

� 	2" #
M þ 1

2
MV

@v

@X

@V

@X
þ OðE5Þ; ð40Þ
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where V ¼ ð@v=@TÞ þUð@v=@XÞ, andM ¼ rA. For the purposes of this analysis, equation
(40) is considered to be valid even for cases where R0 is not so large, simply replacing
M ¼ rA by M ¼ wrA in the equation.

4.2. HYDROSTATIC AND FRICTIONAL FORCES

The hydrostatic forces Fpx and Fpy, the resultants of the steady-state pressure p acting on
the cylinder, are derived by the procedure in Pa.ııdoussis (1973).
Consider an element ds of the cylinder, momentarily frozen and immersed in fluid on all

sides. Hence, in addition to Fpxds and Fpyds, the resultants on the normally wet surfaces,
there are additional forces, pA and pAþ ½@ðpAÞ=@s	ds on the two flat, normally dry,
surfaces of the element. The net resultant of all these forces is known: it is the buoyancy
force. The pressure is assumed to be of the form pðxÞ ¼ aþ bx} which covers both purely
hydrostatic and pressure-drop-modified pressure distributions. Consequently, one may
write

�Fpx �
@

@s
ðpA cos y1Þ

� �
ds iþ Fpy �

@

@s
ðpA sin y1Þ

� �
ds j

¼ %pn dA ¼ �
Z Z Z

=p dðvolÞ ¼ �
@p

@x
i

� 	
Ads; ð41Þ

where n is the outwards pointing normal; to evaluate the right-hand side, use has been
made of the fact that the elemental volume is Ads and that the pressure gradient is in the x-
direction only. Then, using the relations linking @=@x; @=@X and @=@s, the fact that
@A=@X ¼ 0, and also referring to the inset diagram in Figure 2, one obtainsy

�Fpx ¼
@p

@x
A cos2 y1 þ pA

@

@X
ðcos y1Þ �

@p

@x
Aþ OðE4Þ;

Fpy ¼
@p

@x
A cos y1 sin y1 þ pA

@

@X
ðsin y1Þ þ OðE5Þ:

Here, @p=@x has been used in preference to @p=@X since p ¼ pðxÞ. Next, using expressions
(9), we obtain

�Fpx ¼ � y02Að@p=@xÞ � y0y00Apþ OðE4Þ;

Fpy ¼ ðy0 � u0y0 � y03ÞAð@p=@xÞ þ ðy00 � u00y0 � u0y00 � 3
2
y02y00ÞApþ OðE5Þ; ð42Þ

it is recalled that ð Þ0 ¼ @ð Þ=@s � @ð Þ=@X 6¼ @ð Þ=@x:
Furthermore, by assuming the lateral movement of the cylinder to have a negligible

effect on the axial pressure distribution in the fluid at large, one can write (Pa.ııdoussis 1973)

A
@p

@x

� 	
¼ �

1

2
rDU2 CT

D

Dh
þ rgA; ð43Þ

where Dh is the hydraulic diameter, and CT is a friction coefficient } cf. equations (46).
Rewriting the derivative with respect to X by using one of the relationships of the last
yThe following relationships are recalled: (i) x ¼ X þ u, thus @x=@X ¼ 1þ @u=@X; (ii) @X=@s ¼ 1=ð1þ eÞ; e being
the centre-line extension; here ð1þ eÞ ¼ ½ð1þ @u=@XÞ2 þ ð@v=@XÞ2	1=2; (iii) @x=@s ¼ ð@x=@XÞð@X=@sÞ ¼
ð1þ u0Þ=ð1þ eÞ ¼ cos y1. For an inextensible centre-line, e ¼ 0; @X=@s ¼ 1; @x=@X ’ 1� 1

2
y02. Hence, for

example, @ðpA cos y1Þ=@s ¼ ð@ðpAÞ=@sÞcos y1 þ pAð@X=@sÞð@ cos y1=@XÞ=ð@p=@xÞA cos2 y1 þ pAð@ cos y1=@XÞ.
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footnote and integrating from X ¼ s to L, we obtain

ApðsÞ ¼ ApðLÞ þ
1

2
rDU2CT

D

Dh
� rgA

� 	
ðL� sÞ �

Z L

s

1
2
y02 ds

� �
þ OðE4Þ; ð44Þ

an expression used in the last steps of the formulation of the equation of motion.
Finally, introducing these expressions into equations (42) we obtain

�Fpx ¼ y02 1
2
rDU2 CT

D

Dh
� rgA

� 	
� y0y00Apþ OðE4Þ;

Fpy ¼ ðy0 � u0y0 � y03Þ �1
2
rDU2CT

D

Dh
þ rgA

� 	
ð45Þ

þ ðy00 � u00y0 � u0y00 � 3
2
y02y00ÞApþ OðE5Þ:

Here it is noted that in the derivation in Lopes et al. (1999a), the expressions for Fpx and
Fpy are slightly different, having been obtained with the simplifying assumption that
@p=@x ¼ @p=@X , which is correct to first order, but strictly incorrect to third order. The
resulting expressions are given in Appendix A since the equations incorporating these
expressions have been used in the calculations in Part 3.
Next, we proceed with the formulation of the viscous, frictional forces, on the basis of

the semi-empirical expressions proposed by Taylor (1952). These are considered to be
adequate, unless confinement of the flow by the channel is very severe } in which case,
they could be obtained from the unsteady pressures derived analytically by Mateescu et al.
(1994a, b), for instance, but unfortunately not in closed form. An alternative is to use the
semi-empirical data, but which again are not available in easily usable closed form,
compiled in Pa.ııdoussis (1998, 2002); however, these can be fitted in the framework of the
Taylor formulation, and hence we proceed with that.
The expressions proposed by Taylor are

FN ¼ 1
2
rDU2ðCN sin i þ CDp sin

2 iÞ; FL ¼ 1
2
rDU2CT cos i; ð46Þ

where CN and CT are friction coefficients and CDp a form-drag coefficient; i is the angle of
attack. In some of the analysis, distinct CN and CT are used; frequently, however, the
simplified form CN ¼ CT ¼ Cf is taken instead. FN and FL act in the �j1 and i1 direction,
respectively. Expressing i ¼ y1 þ y2, we note that we have already expressions for y1 in
equations (8) and (9). Proceeding similarly, we have y2 ¼ tan�1fð@y=@tÞ=½Uf
�ð@x=@tÞ	g } see Figure 4 } and hence

y2 ¼
’yy

Uf
þ

’xx ’yy

U2
f

�
1

3

’yy3

U3
f

þ OðE5Þ: ð47Þ

We can, therefore, find i, cos i and sin i, as follows:

i ¼ y0 þ
’yy

Uf
� u0y0 þ

’xx ’yy

U2
f

�
1

3
y03 þ

’yy3

U3
f

 !
þ OðE5Þ;

cos i ¼ 1�
1

2
y02 þ 2

y0 ’yy

Uf
þ

’yy2

U2
f

 !
þ OðE4Þ; ð48Þ

sin i ¼ y0 þ
’yy

Uf
� u0y0 þ

’xx ’yy

U2
f

�
1

2
y03 þ

’yy3

U3
f

þ
y02 ’yy

Uf
þ
y0 ’yy2

U2
f

 !
þ OðE5Þ:
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Substituting these in equation (46), and relating Uf to U through equation (11), we obtain

FN ¼ 1
2
rDU2 CN y0 þ

’yy

U
þ

’yyu0

U
� u0y0 þ

’xx ’yy

U2
�
1

2
y03 þ

’yy3

U3
þ
y02 ’yy

U
þ
y0 ’yy2

U2

� 	� 	�

þ CDp y02 þ 2
y0 ’yy

U
þ

’yy2

U2

� 	
	 þ OðE5Þ; ð49Þ

FL ¼ 1
2
rDU2CT 1�

1

2
y02 þ 2

y0 ’yy

U
þ

’yy2

U2

� 	� �
þ OðE4Þ:

The quadratic terms in the expression for FN need to be modified in order to obtain forces
which are odd with respect to y0 and ’yy, thus forces always opposing motion. Triantafyllou
& Chryssostomidis (1989) have shown that terms of the form ½y0 þ ð ’yy=UÞ	2, which are
found in the normal viscous forces, could be written as ½y0 þ ð ’yy=UÞ	jðy0 þ ð ’yy=UÞÞj directly.
In the same spirit, expressing y02 as y0jy0j, ’yy2 as ’yyj ’yyj, and so on in FN , we obtain

FN ¼ 1
2
rDU2 CN y0 þ

’yy

U
þ

’yyu0

U
� u0y0 þ

’xx ’yy

U2
�
1

2
y03 þ

’yy3

U3
þ
y02 ’yy

U
þ
y0 ’yy2

U2

� 	� 	�

þ CDp y0jy0j þ
y0j ’yyj þ jy0j ’yy

U
þ

’yyj ’yyj
U2

� 	
	 þ OðE5Þ: ð50Þ

On the other hand, the longitudinal force is even with respect to y0 to ’yy, and hence no such
modification is necessary.

5. THE EQUATION OF MOTION

The virtual work associated with the fluid-dynamic forces may be expressed as

Z t2

t1

dW dt ¼
Z t2

t1

Z L

0

f½�Fpx þ FL cos y1 þ ðFA þ FNÞ sin y1	dx

þ ½Fpy þ FL sin y1 � ðFA þ FNÞ cos y1	dyg ds dt: ð51Þ

Substituting in the above equation the expressions for FA;Fpx, etc. derived in Section 4,
and utilizing equations (4a–c) and (6a,b), one obtains with the aid of equation (3), the
nonlinear equation of motion:

ðmþMÞ .yyþ 2MU ’yy0ð1þ 7
4
y02Þ þMU2y00ð1þ 5

2
y02Þ � 3

2
M ’yyy0ð ’yy0 þUy00Þ

þ 1
2
rDU2CNðy0 þ 1

2
y03Þ � 1

2
rDU2CT ðL� sÞðy00 þ 3

2
y02y00Þ � ApðLÞðy00 þ y02y00Þ

þ ð1
2
rDU2CThþmg� rgAÞ½y0 þ 1

2
y03 � ðL� sÞðy00 þ 3

2
y02y00Þ	

þ EIðy0000 þ 4y0y00y000 þ y003 þ y0000y02Þ � 1
2
rDCN ’yy

Z s

0

y0 ’yy0 ds

þ 1
2rDU

2CN
’yy

U
� 1
2

y0 ’yy2

U2
� 1

2

y02 ’yy

U
� 1

2

’yy3

U3

� 	
þ 1
2rDU

2CDp y0jy0j þ
y0j ’yyj þ ’yyjy0j

U
þ

’yyj ’yyj
U2

� 	

�my00
Z L

s

Z s

0

ð ’yy02 þ y0 .yy0Þ ds dsþ 2Mð ’yy0 þUy00Þ
Z s

0

y0 ’yy0 ds
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�My00
Z L

s

ð .yyy0 þ 2U ’yy0y0 þU2y00y0Þ dsþ ðmþMÞy0
Z s

0

ð ’yy02 þ y0 .yy0Þ ds

þ y00
Z L

s

fApðLÞy0y00 þ 1
4
rDCT ’yy2g ds

þ 1
2
rDU2y00ðCT � CNÞ

Z L

s

y02 þ
y0 ’yy

U

� 	
dsþ OðE5Þ ¼ 0: ð52Þ

In this equation, it is realized that, unless there is a drogue at the free end, pðLÞ would
normally arise from base drag at the free end of the cylinder, in which case ApðLÞ may be
expressed as 1

2
rD2U2Cb, where Cb is the base drag coefficient. Defining next the

dimensionless quantities

x ¼
s

L
; Z ¼

y

L
; t ¼

EI

mþ rA

� 	1=2
t

L2
; U ¼

rA
EI

� 	1=2
UL;

b ¼
rA

mþ rA
; g ¼

ðm� rAÞgL3

EI
; cN ¼

4

p
CN ; cT ¼

4

p
CT ; ð53Þ

cd ¼
4

p
CDp; e ¼

L

D
; h ¼

D

Dh
; cb ¼

4

p
Cb;

one obtains the dimensionless equation of motion:

½1þ ðw� 1Þb	.ZZþ 2U
ffiffiffi
b

p
w’ZZ0ð1þ 7

4
Z02Þ þU2wZ00ð1þ 5

2
Z02Þ � 3

2
w’ZZZ0ðb’ZZ0 þU

ffiffiffi
b

p
Z00Þ

þ 1
2
U2ecN ½Z0 þ 1

2
Z03	 � 1

2
U2ecT ð1� xÞðZ00 þ 3

2
Z02Z00Þ � 1

2
cbU

2ðZ00 þ Z02Z00Þ

þ ð1
2
U2ecThþ gÞ½Z0 þ 1

2
Z03 � ð1� xÞðZ00 þ 3

2
Z02Z00Þ	

þ Z0000 þ 4Z0Z00Z000 þ Z003 þ Z0000Z02 � 1
2
ecNb’ZZ

Z x

0

Z0 ’ZZ0 dx

þ 1
2U

2ecN

ffiffiffi
b

p
U

’ZZ� 1
2

b

U2
’ZZ2Z0 � 1

2

ffiffiffi
b

p
U

’ZZZ02 � 1
2

b3=2

U3
’ZZ3

 !

þ 1
2
U2ecd Z0jZ0j þ

ffiffiffi
b

p
U

ð’ZZjZ0j þ Z0j’ZZjÞ þ
b

U2
’ZZj’ZZj

 !

� Z00ð1� bÞ
Z 1

x

Z x

0

ð’ZZ02 þ Z0 .ZZ0Þ dx dxþ 2wðb’ZZ0 þU
ffiffiffi
b

p
Z00Þ
Z x

0

Z0 ’ZZ0 dx

� wZ00
Z 1

x
ðb.ZZZ0 þ 2U

ffiffiffi
b

p
’ZZ0Z0 þU2Z00Z0Þ dxþ Z0ð1þ ðw� 1ÞbÞ

Z x

0

ð’ZZ02 þ Z0 .ZZ0Þ dx

þ Z00
Z 1

x
f1
2
cbU

2Z0Z00 þ 1
4
ecTb’ZZ2g dx

þ 1
2
U2Z00ðecT � ecNÞ

Z 1

x
Z02 þ

ffiffiffi
b

p
U

Z0 ’ZZ

 !
dxþ OðE5Þ ¼ 0; ð54Þ

where ð Þ0 ¼ @ð Þ=@x; ð � Þ ¼ @ð Þ=@t.
Since some linear calculations are performed in Parts 1 and 3 of this work (Pa.ııdoussis

et al. 2002; Semler et al. 2002), the linearized version of equation (54) is given below,
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for completeness:

½1þ ðw� 1Þb	.ZZþ 2U
ffiffiffi
b

p
w’ZZ0 þU2wZ00 � ½gþ 1

2
U2ecT ð1þ hÞ	ð1� xÞZ00

þ ½1
2
U2ðecN þ ecThÞ þ g	Z0 þ Z0000 þ 1

2
UecN

ffiffiffi
b

p
’ZZ� 1

2
cbU

2Z00 ¼ 0: ð55Þ

This equation is identical to that given by Pa.ııdoussis (1973) if (i) dissipation in the material
of the cylinder is neglected, (ii) a term equal to þ1

2ecd
ffiffiffi
b

p
’ZZ is added, representing an

arbitrary (nonmathematical) linearization of the damping in stagnant fluid, and (iii) cN ¼
cT ¼ cf is taken. The dissipation can be taken into account by replacing E by fE� �
ð@=@tÞ þ Eg in the dimensional version of the equations of motion. However, flow-induced
damping is much more important for cantilevered cylinders, an inherently nonconserva-
tive system, and hence this term would not change the qualitative dynamics of the system
(except at U ¼ 0), nor sensibly the quantitative dynamics.

6. BOUNDARY CONDITIONS

It is supposed that at its free end the cylinder is terminated by a short, ogival end, the
cross-sectional area of which varies smoothly from A to zero in a distance l5L. Further,
this ogival end is assumed to be rigid, so that its motion is determined solely by the values
of displacement and velocity at s ¼ L� l; y, y0, V and dy are all constant with s. The
boundary conditions are derived to first order, i.e. correct to OðEÞ.
The variation of the Lagrangian of the ogival end is

d
Z t2

t1

L dt ¼ �
Z t2

t1

Z L

L�l
½rcAðsÞð .xxdxþ .yydyÞ � rcAðsÞgdx	 ds dt: ð56Þ

It is convenient to re-write this in terms of virtual displacements in the longitudinal and
transverse directions, duL and duN , respectively,

dx

dy

( )
¼

cos y1 �sin y1
sin y1 cos y1

" #
duL
duN

( )
; ð57Þ

leading to

d
Z t2

t1

L dt ¼ �
Z t2

t1

m½ .yyðsin y1 duL þ cos y1 duNÞ þ .xxðcos y1 duL � sin y1 duNÞ	se dt

þ
Z t2

t1

mgseðcos y1 duL � sin y1 duNÞ dtþ OðE3Þ; ð58Þ

in which se ¼ ð1=AÞ
R L
L�l AðsÞ ds. Furthermore, since .xx is of second order, equation (58)

reduces to

d
Z t2

t1

L dt ¼ �
Z t2

t1

½m .yyseduN �mgseðduL � y0duNÞ	 dtþ OðE3Þ: ð59Þ

Considering next the virtual work by all the fluid-dynamic forces acting on the tapering
end (Figure 5), and following equation (51), we haveZ t2

t1

dW dt ¼
Z t2

t1

Z L

L�l
f½�Fpx þ FL cos y1 þ ðFA þ FNÞsin y1	dx

þ ½Fpy þ FL sin y1 � ðFA þ FNÞcos y1	dyg ds dt; ð60Þ



Fig. 5. The end-piece at the free end of the cylinder showing the forces acting on it; rc is the density of the
cylinder and of the end-piece. The notation in this figure has been simplified; most of the ‘‘forces’’ shown, e.g. FL,

are really forces per unit length and should be understood to stand for
R L
L�l FL ds, etc.
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which, in view of equation (57), may be written asZ t2

t1

dW dt ¼
Z t2

t1

Z L

L�l
f½�Fpx cos y1 þ Fpysin y1 þ FL	duL

þ ½Fpx sin y1 þ Fpy cos y1 � ðFA þ FNÞduNg ds dt: ð61Þ

In this expression, FN and FL are not constant, since the diameter is a function of s, and
similarly Fpx;Fpy and FA involve the cross-sectional area, also varying with s. Thus, noting
that y1; y0 and dy are constant for L� l5s5L and that y00 ¼ 0, we can writeZ t2

t1

dW dt ¼
Z t2

t1

�cos y1

Z L

L�l
FpxduL ds

�

þ sin y1

Z L

L�l
FpyduL dsþ

Z L

L�l
FLduL ds

þ sin y1

Z L

L�l
FpxduN dsþ cos y1

Z L

L�l
FpyduN ds

�f
Z L

L�l
FAduN ds�

Z L

L�l
FNduN ds

�
dt; ð62Þ

in which the parameter f ð04 f41Þ has been introduced in the terms involving FA, since
the ideal inviscid hydrodynamic force will generally not materialize fully over the ogival
end because (i) the lateral flow is not truly two-dimensional, some fluid going axially
‘‘around’’ rather than transversely over the tapering end, and (ii) over part of the ogival
end, there is boundary layer separation (Pa.ııdoussis 1966a). Thus, f ¼ 1 is the ideally
slender case, impossible in practice, while normally 04 f51. In Parts 2 and 3 of this work,
f ! 1 is taken for a well-streamlined end, while f ! 0 for a blunt end; see also last
paragraph of this section.
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In equation (62) the simplified expressions for the various forces}leading to a linear
final boundary condition}are

�Fpx ¼ pðdAðsÞ=dsÞ þ OðE2Þ; Fpy ¼ y0 �1
2
rU2CT

D2ðsÞ
Dh

þ rgAðsÞ þ pðdAðsÞ=dsÞ
� 	

þ OðE3Þ;

FN ¼ 1
2
rDðsÞUCNð ’yyþUy0Þ þ OðE2Þ; FL ¼ 1

2
rDðsÞU2CT þ OðE2Þ; ð63Þ

FA ¼ wrð .yyþU ’yy0ÞAðsÞ þ wrUð ’yyþUy0ÞðdAðsÞ=dsÞ þ OðE3Þ;

cos y1 ¼ 1þ OðE2Þ; sin y1 ¼ y0 þ OðE3Þ;

having also made use of equations (43) and (44).
Substituting equation (63) into (62), and combining with equation (59) as in (3), after

several manipulations and simplifications one obtains

d
Z t2

t1

Ldtþ
Z t2

t1

dW dt

¼
Z t2

t1

fð�ðpAÞjL�l þ
1
2rDU

2CThse þ 1
2rDU

2CT %sse þ ðm� rAÞgseÞgduL dt

þ
Z t2

t1

½�1
2
rDU2CThy

0se � ðm� rAÞgy0se � 1
2
rDUCNð ’yyþUy0Þ%sse

� ½ fMð .yyþU ’yy0Þ þm .yy	se þ fMUð ’yyþUy0Þ	duN dtþ OðE3Þ; ð64Þ

where

se ¼
1

A

Z L

L�l
AðsÞ ds; %sse ¼

1

D

Z L

L�l
DðsÞ ds; ð65Þ

and where it is understood that A ¼ AjL�l ; D ¼ DjL�l ; y
0 ¼ y0jL�l ; ’yy ¼ ’yyjL�l ;

h ¼ D=Dh;M ¼ wrA. Typical values for se and %sse, by way of illustration, are as follows.
For a conical end, DðsÞ ¼ ðD=lÞðL� sÞ; se ¼ 1

3
l; %sse ¼ 1

2
l; for a paraboloidal end,

DðsÞ ¼ ðD=
ffiffi
l

p
Þ
ffiffiffiffiffiffiffiffiffiffiffi
L� s

p
; se ¼ 1

2
l; %sse ¼ 2

3
l; for an ellipsoidal end, DðsÞ ¼ Df1� ½ðs� Lþ

lÞ2=l2	g1=2; se ¼ 2
3
l and %sse ¼ p

4
l.

The first term in equation (64), in curly brackets, represents a small addendum to the
axial pressure-tension terms in the equation of motion, rather than contributing to the
boundary conditions. The second term, in square brackets, is associated with the
transverse shear boundary condition. Accordingly, the boundary conditions at s ¼ L� l
are (Lopes et al. 1999a):

�EIy000 þ ½fMð .yyþU ’yy0Þ þm .yy	se � fMUð ’yyþUy0Þ þ ðm� rAÞgy0se
þ1
2
rDU2CThy

0se þ 1
2
rDUCNð ’yyþUy0Þ%sse ¼ 0; ð66Þ

and
y00 ¼ 0:

The boundary conditions at s ¼ 0 are, of course, yð0Þ ¼ 0, y0ð0Þ ¼ 0.
Finally, equations (66) may be written in dimensionless form as follows:

�Z000þ we½ð1þ ðwf � 1ÞbÞ.ZZþ wfU
ffiffiffi
b

p
’ZZ0	 þ ð1

2
%wweecN � wf ÞðU

ffiffiffi
b

p
’ZZþU2Z0Þ

þ ð1
2
U2ecThþ gÞweZ

0 ¼ Z00 ¼ 0 at x ¼ 1; ð67Þ

where
we ¼ se=L; %wwe ¼ %sse=L: ð68Þ

Other than the approximate empirical correlation between end-shape and f provided by
Figures 8 and 9 of Part 1, there have been two attempts to determine f quantitatively. For
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conical and conoidal ends, Hannoyer & Pa.ııdoussis (1978) have proposed
f ¼ 4s2e=½4s

2
e þ ðDo �DiÞ

2	 ¼ 4e2w2e=½4e
2w2e þ ð1� %ddÞ2	, where %dd ¼ Di=Do in cases where

the cylinder is hollow and conveys fluid internally also, Di and Do being the inner and
outer diameters of the cylinder; here %dd ¼ 0. A more elaborate method has been developed
by Pa.ııdoussis & Yu (1976) for truncated ellipsoidal ends, which however does not provide
an explicit expression for f . In the first case, it is presumed that separation does not occur
at all, while in the second that it occurs exactly at the location where the ellipsoid is
truncated.

7. METHODS OF ANALYSIS

The equation of motion (54) of the cantilevered cylinder, as derived in Section 5, is of
third-order magnitude and hence nonlinear; furthermore, the boundary conditions (67) are
time- and flow velocity-dependent. This renders the problem nonstandard and the solution
procedure more complicated. As a first simplification, the partial differential equations
(54) and (67) are transformed into a set of second-order ordinary differential equations
using Galerkin’s method. However, since the boundary conditions are time-dependent,
different approaches are possible, as discussed in detail in Lopes et al. (1999b).y

Let us write for simplicity the equation of motion in the form FðZ;UÞ ¼ 0. Then, with
the boundary conditions added, the boundary value problem may be formulated as

FðZðx; tÞ;UÞ ¼ 0; ð69Þ

Zð0; tÞ ¼ Z0ð0; tÞ ¼ 0; Z00ð1; tÞ ¼ �Z000ð1; tÞ þ BðZð1; tÞ;UÞ ¼ 0; ð70Þ

where BðZ;UÞ represents a complementary term in the end-shear boundary condition due
to the tapering end. An alternative way of formulating the problem is the following:

FðZðx; tÞ;UÞ þ dðx� 1ÞBðZðx; tÞ;UÞ ¼ 0; ð71Þ

Zð0; tÞ ¼ Z0ð0; tÞ ¼ 0; Z00ð1; tÞ ¼ Z000ð1; tÞ ¼ 0; ð72Þ

where dðx� 1Þ is the Dirac delta function. With these two formulations in mind, three
methods may be proposed to discretize the system, as follows.
Method (a) consists of utilizing the eigenfunctions FjðZÞ of the problem Z0000 þ .ZZ ¼ 0, i.e.,

the dry cantilevered-cylinder equation of motion, subject to boundary conditions (70), to
discretize the system and apply them to the problem (69). In Method (b), the same
eigenfunctions FjðxÞ are used, but they are applied to an ‘‘expanded domain’’ of the
problem, which effectively means that the time-dependent boundary condition, the last of
equations (70), is added to the equation of motion, i.e., the expression ½�Z000ð1; tÞþ
BðZð1; tÞ;UÞ	 is added to the left-hand side of equation (69) via a Dirac delta function.
Finally, in Method (c), the cantilever beam eigenfunctions fjðxÞ satisfying equations (72)
are used directly to discretize equation (71).
It has been shown by Lopes et al. (1999b) that Method (b), although requiring only a

small number of modes to yield extremely accurate results, is difficult to implement and is
numerically very time-consuming, especially for a nonlinear problem. On the other hand,
Method (c) is easy to implement and leads to more accurate results than Method (a),
provided enough terms are used } cf. Pa.ııdoussis (1998, Section 4.6.2). Hence, this is the
method that is presented here.
yAn alternative would clearly be to use the Rayleigh–Ritz method.
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This infinite-dimensional model is discretized by Galerkin’s technique with the
cantilever beam eigenfunctions, fjðxÞ, used as a suitable set of base functions and with
qjðtÞ the corresponding generalized coordinates; thus,

Zðx; tÞ ¼
XN
j¼1

fjðxÞqjðtÞ; ð73Þ

where N represents the number of modes. Substituting expression (73) into (54),
multiplying by fiðxÞ and integrating from 0 to 1, leads to the following matrix form:

Mij .qqj þ Cij ’qqj þ Kijqj þ rijkqj jqkj þ %ssijkjqj j ’qqk þ *ssijkqj j ’qqkj þ tijk ’qqj j ’qqkj

þaijklqjqkql þ bijklqjqk ’qql þ gijklqj ’qqk ’qql þ Zijkl ’qqj ’qqk ’qql þ mijklqjqk .qql ¼ 0:
ð74Þ

Considering the linear terms, Mij, Cij and Kij correspond to the mass, damping and
stiffness matrices, respectively, while aijkl, bijkl, gijkl, Zijkl, mijkl , rijk, %ssijk, *ssijk, tijk are related to
the nonlinear terms.
The mass, damping and stiffness matrices are defined by

Mij ¼ ½1þ ðwf � 1Þb	wefið1Þfjð1Þ þ ½1þ ðw� 1Þb	dij ;

Cij ¼ ð1
2
%wweecN � wf ÞU

ffiffiffi
b

p
fið1Þfjð1Þ þ wfU

ffiffiffi
b

p
wefið1Þf

0
jð1Þ þ 2wU

ffiffiffi
b

p
bij þ 1

2
UecN

ffiffiffi
b

p
dij ;

Kij ¼ ðgwe þ
1
2
U2ðecN %wwe þ ecThweÞ � wfU2Þfið1Þf

0
jð1Þ þ wU2cij ð75Þ

þ ð 1
2
U2ecT ð1þ hÞ þ gÞðdij � cijÞ þ ð1

2
U2eðcN þ cThÞ þ gÞbij þ l4j dij �

1
2
U2cbcij ;

where the constants, bij, cij , dij , introduced by Pa.ııdoussis & Issid (1974), are defined by

bij ¼
Z 1

0

fif
0
j dx; cij ¼

Z 1

0

fif
00
j dx; dij ¼

Z 1

0

xfif
00
j dx: ð76Þ

Furthermore, the nonlinear coefficients in equation (74) are defined by

aijkl ¼ 5
2
wU2

Z 1

0

fif
00
j f

0
kf

0
l dxþ ð1

2
U2eðcN þ cThÞ þ gÞ 1

2

Z 1

0

fif
0
jf

0
kf

0
l dx

� ð1
2
U2ecT ð1þ hÞ þ gÞ 3

2

Z 1

0

ð1� xÞfif
0
jf

0
kf

00
l dx

þ 4
Z 1

0

fif
0
jf

00
kf

000
l dxþ

Z 1

0

fif
00
j f

00
kf

00
l dxþ

Z 1

0

fif
0000
j f0

kf
0
l dx

� wU2

Z 1

0

fif
00
j

Z 1

x
f0
kf

00
l dx

� 	
dx

þ 1
2
U2cb

Z 1

0

fif
00
j

Z 1

x
f0
kf

00
l dx

� 	
dx� 1

2
U2cb

Z 1

0

fif
0
jf

0
kf

00
l dx

þ 1
2
U2eðcT � cNÞ

Z 1

0

fif
00
j

Z 1

x
f0
kf

0
l dx

� 	
dx;
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bijkl ¼ wU
ffiffiffi
b

p �
7
2
:

Z 1

0

fif
0
jf

0
kf

0
l dx�

3
2

Z 1

0

fif
00
j f

0
kfl dx� 2

Z 1

0

fif
00
j

Z 1

x
f0
kf

0
l dx

� 	
dx

þ2
Z 1

0

fif
00
j

Z x

0

f0
kf

0
l dx

� 	
dx
�
� 1

4
U

ffiffiffi
b

p
ecN

Z 1

0

fif
0
jf

0
kfl dx

þ 1
2
U

ffiffiffi
b

p
eðcT � cNÞ

Z 1

0

fif
00
j

Z 1

x
f0
kfl dx

� 	
dx;

gijkl ¼ � 3
2wb

Z 1

0

fif
0
jfkf

0
l dx� ð1� bÞ

Z 1

0

fif
00
j

Z 1

x

Z x

0

f0
kf

0
l dx dx

� 	
dx

þ ð1þ ðw� 1ÞbÞ
Z 1

0

fif
0
j

Z x

0

f0
kf

0
l dx

� 	
dxþ 2wb

Z 1

0

fif
0
k

Z x

0

f0
jf

0
l dx

� 	
dx

� 1
2
becN

Z 1

0

fifk

Z x

0

f0
jf

0
l dx

� 	
dx� 1

4
becN

Z 1

0

fif
0
jfkfl dx

þ 1
4
becT

Z 1

0

fif
00
j

Z 1

x
fkfl dx

� 	
dx; ð77aÞ

Zijkl ¼ � 1
4

b3=2ecN
U

Z 1

0

fifjfkfl dx;

mijkl ¼ � ð1� bÞ
Z 1

0

fif
00
j

Z 1

x

Z x

0

f0
kf

0
l dx dx

� 	
dx� wb

Z 1

0

fif
00
j

Z 1

x
f0
kfl dx

� 	
dx

þ ð1þ ðw� 1ÞbÞ
Z 1

0

fif
0
j

Z x

0

f0
kf

0
l dx

� 	
dx;

rijk ¼ 1
2
U2ecd

R 1
0
fif

0
j jf

0
kj dx; %ssijk ¼ 1

2
U

ffiffiffi
b

p
ecd
R 1
0
fijf

0
j jfk dx; ð77bÞ

*ssijk ¼ 1
2
U

ffiffiffi
b

p
ecd
R 1
0 fif

0
j jfkj dx; tijk ¼ 1

2
becd

R 1
0 fifj jfkj dx:

8. CONCLUSION

In this paper, a nonlinear equation of motion, correct to OðE3Þ, has been derived for the
dynamics of a cantilevered cylinder in axial flow via variational methods; in a consistent
manner, linear boundary conditions have also been obtained for the case of the cylinder
being terminated by a rigid, ogival end.
This equation is probably not the definitive nonlinear equation of motion for this

system, since it was not obtained by a unified nonlinear treatment of the fluid mechanics.
Nevertheless, the equation obtained provides a reasonable and useful tool for the
exploration of the nonlinear dynamics of the system, which has hitherto been impossible.
How successfully does this equation capture the true dynamics of the system has to be
judged by comparing theoretical predictions with experimental observations. This is done
in Part 3 of this study (Semler et al. 2002) and, as will be seen, agreement is reasonably
good.
In the linear limit, the equation of motion and the boundary conditions are

fundamentally the same as in Pa.ııdoussis (1973), though with some small improvements
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in the latter, notably including some viscous effects. Hence, agreement with linear aspects
of observed behaviour (e.g., the threshold flow velocities for divergence and flutter) is
expected to be similar to that displayed in Pa.ııdoussis (1973, 2002).
No conclusions as such can be drawn from the work so far, and the true conclusions

relating to the theory are deferred to Part 3 of this work.
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APPENDIX A: THE EXPRESSIONS FOR Fpx AND Fpy IN LOPES ET AL. (1999a)

As mentioned in Section 4.2, in the original derivation, in Lopes et al. (1999a), the
simplification was introduced that @p=@x ¼ @p=@X .z The expressions for Fpx and Fpy then
are as follows:

�Fpx ¼ 1
2
y02 1

2
rDU2CT

D

Dh
� rgA

� 	
� y0y00Apþ OðE4Þ;

Fpy ¼ ðy0 � 2u0y0 � 1
2
y03Þ �1

2
rDU2CT

D

Dh
þ rgA

� 	
ðA:1Þ

þ ðy00 � u00y0 � 2u0y00 � 3
2
y02y00ÞApþ OðE5Þ:

By comparing equation (A.1) to (45), it is seen that this ‘‘simplification’’ does not in fact
result in expressions for Fpx and Fpy that are simpler, although the derivation was.
More important, however, is to note that when the correct expressions, equations (45),

are used, the ‘‘symmetry’’ or parallelism between terms involving mg for the gravity
components and �rgA for the buoyancy components is achieved in the final equation of
motion, which is absent in the Lopes et al. equation. Thus, in the corrected final
dimensionless equations of motion, equation (52), it is possible to use a single parameter
g ¼ ðm� rAÞgL3=EI , while in Lopes et al. (1999a,b) we have to have two parameters
separately, gC ¼ mg L3=EI and gF ¼ rgAL3=EI .
The only reason for giving here the expressions for Fpx and Fpy in Lopes et al. is that

these expressions, and the final equation incorporating them, have been used to conduct
the calculations presented in Part 3. Nevertheless, discrepancies in the results only become
important if g is relatively large, i.e., if gC and gF are considerably different from each
other, and h is large. However, in the calculations of Part 3, g ¼ 0 in some cases, while
g ¼ 1�9 in others; the results for g ¼ 1�9 ðgC ¼ 14�4 and gF ¼ 12�5Þ are virtually the same
as for g ¼ 0. Furthermore, h ¼ 0 has been taken throughout.
zThis, alternatively viewed, amounts to considering the elemental volume in equation (41) to be Adx.
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